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Background
US power generation capacity is increasing ~2.6% 
annually (Worldwide ~ 3%)
Much of this power is large turbines, but 
reciprocating engines play an important role for 
distributed resources
Climate change has placed an emphasis on 
efficiency (CO2), while air quality issues have placed 
an emphasis on NOx
Natural gas engines have potential to fulfill the 
market requirements for low NOx and high efficiency
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Background (2)
Development efforts to improve the performance 
and emission to unprecedented levels are on-
going
Two notable U.S. efforts are

ARES - Advanced Reciprocating Engine Systems, 
sponsored by the U.S. Department of Energy
ARICE - Advanced Reciprocating  Internal Combustion 
Engine, sponsored by the California Energy Commission
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Why reciprocating engines?

Cost
Flexibility
Reliability
Efficiency
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Spark-Ignited, Prechamber, 
Natural Gas Engine Combustion 
Concept



Source: Bluestein, Joel, “ARES 
Engine Market Assessment”, ARES 
Peer Review, April 2002



Advanced Reciprocating EnginesAdvanced Reciprocating Engines

Engines come in various sizes...

Small Engines
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Engines come in various sizes...

Small Engine
Light Duty
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Engines come in various sizes...

Small Engine
Light Duty
Heavy Duty
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Engines come in various sizes...

Small Engine
Light Duty
Heavy Duty
Locomotive
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Engines come in various sizes...

Small Engine
Light Duty
Heavy Duty
Locomotive
Stationary
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Engine Piston Comparison
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150 kW Genset

Engines of many 
different sizes are 
being adapted to 
power generation 
to fulfill the need 
for distributed 
power
8.1 liter 
automotive 
engine
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2000 kW Genset

CAT G3520
86 liter engine 
designed as a 
stationary 
paltform



Source: Bluestein, Joel, “ARES Engine 
Market Assessment”, ARES Peer Review, 
April 2002
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Caterpillar, Inc
Cummins Engine 
Company, Inc
Deutz
Fairbanks Morse 
Engine
Guascor
Jenbacher
MAN B&W

Mitsubishi Heavy 
Industries
MTU
Niigata Engineering 
Company
Perkins Engine 
Company
Rolls-Royce
Wärtsilä 
Waukesha Engine

Manufacturers of Large 
Natural Gas Engines
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Aspects of Engine 
Performance

Operating Costs
Emissions

Capital Costs
Power

Density
MaintenanceDurability

Cost

Rated 
SpeedPower/Weight

Efficiency
BMEP
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Engine Characteristics

Number of Cylinders
Bore (mm) (diameter of piston/cylinder)
Speed (rpm)
Power (MW)
Power Density (kW/liter)
BMEP (bar)
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Number of Cylinders versus 
Engine Bore Diameter

4

6

8

10

12

14

16

18

20

22

100 150 200 250 300 350 400 450 500
Bore (mm)

N
um

be
r o

f C
yl

in
de

rs



Advanced Reciprocating EnginesAdvanced Reciprocating Engines

Engine Power versus Engine 
Bore Diameter
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Power and Speed Range for 
Engines of Various Sizes

Engine Power (kW) at 15 bar BMEP
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Power Density versus 
Engine Bore Diameter

0

5

10

15

20

25

30

100 150 200 250 300 350 400 450 500
Bore (mm)

Po
w

er
 D

en
si

ty
 (k

W
/li

te
r)

Low Speed Engines

High Speed Engines
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BMEP is a normalized measure of the engine power
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Impact of BMEP and Engine 
Speed on Engine Efficiency
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Brief Historical Trend for 
BMEP
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Brief Historical Trend for 
Thermal Efficiency
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ARES Program
ARES is a multi-faceted R&D 
program involving engine 
manufacturers, research 
laboratories, universities, and 
national laboratories.

National Energy Technology Laboratory
Southwest Research Institute
Oak Ridge NL
Argonne NL
Sandia NL
Los Alamos NL

National
Laboratories

Ohio State
Purdue

Colorado State
MIT

Michigan Tech
USC

U of Texas
West Virginia

U of Tennessee

Universities
Engine

Manufacturers

Caterpillar
Cummins
Waukesha
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ARES Program
ARES Focused research areas
Short term targets (‘05)

Efficiency ~ 46%
BSNOx ~ 0.15 g/kW-hr

Knock Modeling
Dilute Combustion
HCCI
Ultra Lean Combustion
Sensors and Controls

National
Laboratories

Emissions
Friction
Ignition

Universities
Engine

Manufacturers

High BMEP 
Engine 
Development
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ARES Technologies
Combustion 

Chamber 
Geometry

High Power 
Density

Water 
Injection

Exhaust
Aftertreatment

LNC, TWC, SCR

Combustion 
of Dilute 
Mixtures

Modified or 
Alternative 

Engine 
Cycles

Multiple 
Source 
Ignition

Exhaust
Energy

Retention

Turbo-
compounding

Friction 
Reduction
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Simplified Methane Combustion 
Chemistry

CH4 2 O2 CO2+ + 2 H2O
Reactants Products

N2 NOx

+

CO
CH4

PartialPartial
OxidationOxidation
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Emission Levels and Air-Fuel Ratio 
Operating Range for Gas Engine

Air-Fuel Ratio
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Lean Burn, combustion 
diluted with excess air, 
exhaust contains oxygen 
making catalytic 
aftertreatment of NOx 
problematic

Stoichiometric combustion 
Just enough air to 
consume all of the fuel, 
exhaust contains little 
oxygen enabling catalytic 
aftertreatment of NOx
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Aftertreatment
Lean NOx catalyst (LNC)

Currently not a viable technology
Selective catalytic reduction (SCR)

Viable for lean combustion, requires reductant (typically 
urea) that adds to operating costs
Potential for ammonia slip, control issue
90-95% efficiency

3-way catalyst if no oxygen present in exhaust 
stream

Proven in light duty, shorter life applications
Low capital cost relative to SCR
95-99% efficiency
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Gas Engine vs. Turbine 
Efficiency
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Upcoming Regulations

“National Emissions Standards for 
Hazardous Air Pollutants (HAPS) for 
Stationary Reciprocating Internal 
Combustion Engines (RICE)” (NESHAP)
Purpose

Set regulatory standards for HAPs or Air Toxic 
Emissions from RICE
HAPs of most concern 
——formaldehydeformaldehyde, acrolein, methanol, acetaldehyde
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RICE - Subcategories

Engine 
Inventory

Emergency power/limited use
Landfill gas or digester gas combusted as primary fuel
Engines less than 500 brake horsepower 
Other

Four stroke lean burn (4SLB)
Four stroke rich burn (4SRB)
Compression Ignition (CI)
Two stroke lean burn (2SLB)
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RICE - Applicability 
The rule will apply to each stationary RICE located 
at a major source of HAP above 500HP
Stationary RICE meeting any of the following 
criteria have no requirements except for an initial 
notification requirement:

Emergency power/limited use units
Units that combust digester or landfill gas as primary 
fuel

Existing 2SLB, existing 4SLB, and existing CI 
have nono requirements
In summary, existing 4SRB and all new RICE have 
regulatory requirements
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Analysis

Rule basically requires an oxidation 
catalyst for new engines
Most immediate impact in gas 
transmission industry - largest single 
concentration of RICE at major sources
Many applications will not be greater 
than 500 hp or will not be located at 
major sources - so this rule will not 
apply
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RICE MACT Schedule

Proposed in December 19, 2002
Comments until February 20, 2003
Promulgation in February 28, 2004
Engines installed after proposal must 
meet final rule 
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Summary

Gas engine efficiency will continue to 
improve even as emission levels 
continue to decrease
Concerted development efforts are 
required for continuous improvement 
to overcome technical barriers
Advanced concepts will be required 
to achieve and exceed the projected 
development targets
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Southwest Research Institute
San Antonio, Texas, U. S.

Thank you for your attention!
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